Mathematics Pre-Course Work

This work is important – please bring your solutions to your first lesson. You will have a test on the content covered herein at the beginning of term.

Welcome to 6th Form Mathematics. This booklet is designed to prepare you for studying Mathematics post-16 by focusing on those topics from the GCSE course which have strong links to Key Stage 5 Mathematics.

These questions do not require the use of a calculator.

Below is a list of resources you may find useful for guidance or additional practice:

HegartyMaths	https://www.hegartymaths.com	
Mymaths	www.mymaths.co.uk	
GCSE	www.bbc.co.uk/schools.gcsebitesize/maths/algebra	
Bitesize		
MangaHigh	www.mangahigh.com/en_gb/maths_games/algebra	
Maths Made	www.mathsmadeeasy.co.uk/algebra/algebragcse.htm	
Easy		

Good luck!

Mathematics Pre-Course Work

1. **Fractions**

Examples: Calculate 1)
$$1\frac{2}{3} + 1\frac{1}{2}$$
 2) $\frac{3}{8} \times \frac{4}{9}$ and 3) $2\frac{1}{4} \div \frac{3}{5}$

$$\left(\frac{3}{8} \times \frac{4}{9}\right)$$
 an

3)
$$2\frac{1}{4} \div \frac{3}{5}$$

Solution 1)
$$1\frac{2}{3} + 1\frac{1}{2}$$
 Solution 2) $\frac{3}{8} \times \frac{4}{9}$ Solution 3) $2\frac{1}{4} \div \frac{3}{5}$

Solution 2)
$$\frac{3}{8} \times \frac{4}{9}$$

Solution 3)
$$2\frac{1}{4} \div \frac{3}{5}$$

$$=\frac{5}{3}+\frac{3}{2}$$

$$=\frac{3^1}{8^2}\times\frac{4^1}{6_2}$$

$$= \frac{9}{4} \div \frac{3}{5}$$

$$=\frac{10}{6}+\frac{9}{6}$$

$$=\frac{1}{2}\times\frac{1}{3}$$

$$=\frac{9^3}{4}\times\frac{5}{3^1}$$

$$=\frac{19}{6}$$

$$=\frac{1}{6}$$

$$=\frac{3}{4}\times\frac{5}{1}$$

$$=3\frac{1}{6}$$

$$=\frac{15}{4}$$

Your Turn:

a)
$$\frac{3}{5} - \frac{1}{5} =$$

e)
$$\frac{3}{8} - \frac{1}{6} =$$

i)
$$1 \div \frac{1}{5} =$$

b)
$$\frac{3}{7} - \frac{4}{7} =$$

f)
$$1\frac{9}{10} - \frac{1}{3} =$$

j)
$$\frac{2}{3} \div 1\frac{1}{9} =$$

c)
$$\frac{2}{5} + \frac{3}{10} =$$

g)
$$\frac{2}{3} \times 3\frac{4}{5} =$$

d)
$$2\frac{1}{5} + \frac{3}{10} =$$

h)
$$2\frac{4}{5} \times 4\frac{5}{6} =$$

Laws of Indices 2.

Simplify, writing as a single power. 1) $4^2 \times 4^5$ 2) $4^9 \div 4^3$ 3) $(5^2)^5$ **Examples:**

$$(2) 4^9 \div 4^3 \qquad (5^2)^5$$

Solution 1)
$$4^2 \times 4^5$$

= 4^{2+5}
= 4^7

Solution 2)
$$4^9 \div 4^3$$

= 4^{9-3}
= 4^6

Solution 3)
$$(5^2)^5$$

= $5^{2 \times 5}$
= 5^{10}

Your Turn:

a)
$$2^2 \times 2^5 =$$

d)
$$(x^5)^3 =$$

$$f) \qquad \frac{c^3 \times c^2}{c^7} =$$

b)
$$3^4 \div 3^3 =$$

e)
$$(a^4)^3 \div (a^2)^3 =$$

e)
$$(a^4)^3 \div (a^2)^3 =$$

c)
$$4^7 \div 4^3 \times 4^2 =$$

Examples: Calculate the value without a calculator. 1) 5⁻³ Solution 1)

$$5^{-3} = \frac{1}{5^3} = \frac{1}{125}$$

Solution 2)
$$8^{1/3}$$
 = $\sqrt[3]{8}$

Your Turn:

 $3^{-2} =$ g)

k)

 $7^0 =$ h)

 $2 \times 3^3 =$ i)

I)

 $2^2 \times 3^2 =$ j)

Surds 3.

Examples: Simplify, writing as a single surd where possible 1) $\sqrt{3} + 2\sqrt{3}$

2) $\sqrt{2} \times \sqrt{5}$ 3) $\sqrt{90}$

 $\sqrt{3} + 2\sqrt{3}$ Solution 1) $= 3\sqrt{3}$

Solution 2) $\sqrt{2} \times \sqrt{5}$ $=\sqrt{2\times5}$ $= \sqrt{10}$

 $\sqrt{90}$ Solution 3) $=\sqrt{9\times10}$ $=\sqrt{9}\times\sqrt{10}$ $= 3\sqrt{10}$

Your Turn:

a)
$$3\sqrt{7} + 2\sqrt{7} =$$

d)
$$3\sqrt{6} \times \sqrt{6} =$$

g)
$$\sqrt{54} =$$

b)
$$4\sqrt{2} - 3\sqrt{2} =$$

e)
$$\sqrt{18} =$$

h)
$$\sqrt{12} =$$

c)
$$3\sqrt{7} \times \sqrt{7} =$$

f)
$$\sqrt{32} =$$

Expanding and Simplifying Expressions 4.

Examples: Expand and simplify 1) 4(x + 2) - 3(x - 1)and (x + 4)(x - 6)

Solution 1) 4(x+2)-3(x-1)= 4x + 8 - 3x + 1= 4x - 3x + 8 + 1= x + 9

Solution 2) $= x^2 - 24 + 4x - 6x$ $= x^2 - 2x - 24$

Your Turn:

a)
$$6b^2 + 5b - 1 + 3b + 4$$

f)
$$(x-1)(x+1)$$

$$k) \qquad \frac{3x+6y}{3}$$

b)
$$5(x-3)$$

g)
$$(3a + 2)(a - 1)$$

$$1) \qquad \frac{4}{2x+4}$$

c)
$$-2(3x + 1)$$

h)
$$(2b-3)(3b-2)$$

$$2x+4$$

d)
$$3(4x+2)+5(2x-1)$$

m)
$$\frac{2}{5x-2}$$

e)
$$5(2x-4)-2(3x-7)$$

$$j)$$
 $(3x)^2$

Factorising 5.

Examples:

2)
$$x^2 + 3x + 3$$

3)
$$x^2 - 9$$

Solution 1) 9xy + 15x 3x(

2)
$$x^2 + 3x + 2$$

write the highest common factor, HCF, outside the brackets divide both parts of the expression by the HCF check your answer by multiplying through the brackets.

Solution 2)
$$x^2 + 3x + 2$$

 $(x)(x)$
 $(x+2)(x+1)$

Set out double brackets, writing an x in each one Think of two factors of 2 that will add to 3.

Solution 3)
$$x^2 - 9$$
 $(x + 3)(x - 3)$

9 and x² are both square numbers; this is a DOTS question! add and subtract the square roots in the brackets.

Your Turn:

a)
$$4x + 8 =$$

e)
$$x^2 + 4x + 3$$

i)
$$x^2 - 36$$

f)
$$x^2 + 8x + 15$$

j)
$$2x^2 + 7x + 5$$

c)
$$8x^2 - 10x$$

g)
$$x^2 + 12x - 28$$

d)
$$8ab^2 - 4a^2b$$

h)
$$x^2 - 17x + 30$$

Solving Linear Equations 6.

Examples:

Solve the following equations 1) 5x + 4 = 11

and 2)
$$7(x-2) = 7$$

Solution 1)
$$5x + 4 = 11$$

$$7(x-2)=7$$

$$5x = 11 - 4$$

$$7x - 14 = 7$$

$$5x = 7$$

$$7x = 7 + 14 = 21$$

$$x = 7 \div 5 = \frac{7}{5}$$

$$x = 21 \div 7 = 3$$

Your Turn:

a)
$$5x + 7 = 32$$

f)
$$\frac{3x-13}{7} + \frac{11-4x}{3} = 0$$

b)
$$2(2x-7)=7$$

d)
$$3p + 2 = 5 - p$$

g)
$$\frac{6}{x} + \frac{3}{2x} = \frac{5}{2}$$

c)
$$4x - 5 = 2x + 7$$

e)
$$2-3(2x-5)=7-x$$

Formulae 7.

Examples: Substitute into the following formulae to determine the missing value 1) If x = ab - c, find x = ab - c, find x = ab - cwhen a=4, $b=\frac{1}{2}$ and c=-5

$$x = ab - c$$

$$=4\times\frac{1}{2}-\left(-5\right)$$

$$=4 \times \frac{1}{2} - (-5)$$
 $4 \times \frac{1}{2} = 2$ and $-(-5)$ is the same as $+5$

$$= 2 + 5$$

$$= 7$$

Your Turn:

a)
$$x = ab + c$$
 Find x when $a = \frac{2}{3}$, $b = 9$ and $c = -3$

b)
$$x = 2a^2$$
 Find x when $a = \frac{3}{4}$

c)
$$A = 4\pi r^2$$
 Find r when $A = 616$

d)
$$a = b - \frac{1}{2}c$$
 Find c when $a = 6$ and $b = 10$

e)
$$v = u + at$$
 Find a when $v = 21.5$, $u = 4$ and $t = 7$

Examples: Make x the subject of each of these formulae;

1)
$$a = x - ab$$

2)
$$xy = w$$

3)
$$f = d(x+e)$$

Solution 1)

$$a = x - ab$$

Treat ab as a single item; add ab to each side

$$a + ab = x$$

Swap each side to give x =

$$x = a + ab$$

Solution 2)

$$xy = w$$

Remember that $xy = x \times y$, you need to divide by y

$$x = \frac{w}{y}$$

Solution 3)

$$f = d(x+e)$$

Firstly multiply out the brackets

$$f = dx + de$$

Treating de as a single item; subtract de from each side

$$f - de = dx$$

Divide by *d*

$$\frac{f-de}{d} = x$$

Swap each side to give x =

$$x = \frac{f - de}{d}$$

Your Turn:

f)
$$3x = b$$

i)
$$2(3x-1)=5y$$

$$1) \qquad \sqrt{x-2} = y$$

g)
$$\frac{x}{5} = d$$

$$j)$$
 ax = bx + c

h)
$$f = 4 - x$$

k)
$$mx = u - 2x$$

8. Solving Quadratic Equations

Examples:

Solve the following quadratic equations; 1) $x^2 - 8x + 12 = 0$ and 2) $y^2 + 13y + 40 = 0$.

Solution 1)

In the quadratic equation $x^2 - 8x + 12 = 0$, the expression can be factorised. So (x - 6)(x - 2) = 0 We set each factor pair equal to zero to get our two solutions.

$$x - 6 = 0$$

$$x - 2 = 0$$

Solution 2)

In the equation $y^2 + 13y + 40 = 0$, we have a = 1, b = 13 and c = 40. So

$$y = \frac{-13 \pm \sqrt{13^2 - 4 \times 1 \times 40}}{2 \times 1} = \frac{-13 \pm \sqrt{169 - 160}}{2} = \frac{-13 \pm \sqrt{9}}{2} = \frac{-13 \pm 3}{2} = \frac{-13 \pm 3}{2} \text{ or } \frac{-13 - 3}{2} = -5 \text{ or } -8$$

Your Turn:

b)

a)
$$n^2 + 5n + 4 = 0$$

$$t^2 - 4t - 12 = 0$$

c)
$$x^2 - 81 = 0$$

d)
$$x^2 - 2x - 6 = 0$$

e)
$$x^2 - 6x - 8 = 0$$

f)
$$3x^2 + 10x - 7 = 0$$

9. Simultaneous Linear Equations

Examples:

Solve the following pairs of simultaneous equations

$$7x + 2y = 32$$
$$x + y = 1$$

$$5x + 2y = 26$$
$$4x - 3y = 7$$

Solution 1)

Double the second equation to give

$$7x + 2y = 32$$

$$2x + 2y = 2$$

Subtract the new second equation from the new first, and solve the resulting equation to find x

$$5x = 30$$

$$x = 6$$

Substitute into either of the original equations to find y

$$x + y = 1$$

$$\Rightarrow$$
 6+ y = 1

$$v = -5$$

Solution 2)

Multiply the first equation by 3 and the second equation by 2 to give

$$15x + 6y = 78$$

$$8x - 6y = 14$$

Add the two equations and solve

$$23x = 92$$

$$x = 4$$

Substitute into either of the original equations to find y

$$5x + 2y = 26$$

$$\Rightarrow$$
 20 + 2 v = 26

$$2y = 6$$

$$y = 3$$

Your Turn:

a)
$$5x - 3y = 23$$

$$2x + 3y = 26$$

b)
$$y = 2x + 1$$

$$3y + 10x = 7$$

c)
$$5x + 2y = 11$$

$$3x + 7y = -5$$

d)
$$x + 2y = 4$$

$$2x + y = 5$$

e)
$$3x - 6y = 33$$

$$x - 3y = 16$$

10. Straight Line Graphs

Draw the graph and state the gradient and y-intercept for each line.

Example: y = 3x - 2

Either set up a table of values to get some coordinates or go straight to the graph using the gradient and y-intercept.

Х	-2	0	2
у	-8	-2	4

$$y = 3 \times -2 - 2 = 8$$

$$y = 3 \times 0 - 2 = -2$$

$$y = 3 \times 2 - 2 = 4$$

When written in the form y = mx + c

$$m = gradient = \frac{change in y}{change in x}$$

c = y-intercept

for this equation, m = 3 and c = -2

Your Turn:

a)
$$y = 2x + 1$$

b)
$$y = \frac{2}{3}x - 3$$

c)
$$x + 2y = 6$$